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Abstract

We show that the relations which define the algebras of the quantum Euclidean planesR
N
q can

be expressed in terms of projections provided that the unique central element, the radial distance
from the origin, is fixed. The resulting reduced algebras without center are the quantum Euclidean
spheresSN−1

q . The projectionse = e2 = e∗ are elements in Mat2n(S
N−1
q ), with N = 2n + 1 or

N = 2n, and can be regarded as defining modules of sections ofq-generalizations of monopoles,
instantons or more general twisted bundles over the spheres. We also give the algebraic definition
of normal and cotangent bundles over the spheres in terms of canonically defined projections in
MatN(SN−1

q ).
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1. Introduction

LetA be an associative algebra defined formally in terms of a set ofN generatorsxi and a
set of relationsR(xi). Suppose that for a fixed value of each of the parameters which enter in
the definition of theR(xi) some of the relations reduce to the constraint that the algebra be
commutative. We refer to these as commutation relations. The remaining relations become
constraints in the commutative limit and define the noncommutative generalization of a

∗ Corresponding author.
E-mail address: landi@dsm.univ.trieste.it (G. Landi).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(02)00132-8



152 G. Landi, J. Madore / Journal of Geometry and Physics 45 (2003) 151–163

submanifold ofRN . We suppose for simplicity that there is only one relation of this form.
The commutative limit will describe then a submanifoldV of dimensionN − 1 embedded
in R

N . If one introduce the moving frame dxi on R
N then the latter acquires the structure

of a flat differential manifold. This defines by the embedding, i.e. by the relations, a moving
frameθα onV , which one can always choose so that locally the last component is normal
toV . WhenV is parallelizable this choice can be made globally and the module of sections
T of the cotangent bundleT ∗(V ) is free. In all cases the embedding defines a splitting of
the module of sectionsAN of T ∗(RN) into a direct sum

AN = T⊕N (1.1)

of T and a free moduleN of rank 1. The metric and the frame onV are determined by the
embedding relations. The construction is most elegantly described in terms of projections
in the matrix algebra MatN(A), i.e. elementse ∈ MatN(A) such thate2 = e = e∗. It
is a consequence of the Serre-Swan theorem (cf.[7,15,18,20]) that to every vector bundle
overV corresponds an equivalence class of projections in a matrix algebra Matr (A), for a
suitabler. The module of sections of the bundle is a projective module of finite type over
the algebraA and conversely any such a module can be realized as the module of sections
of a bundle; and these modules are naturally characterized by projections. This correspon-
dence quite naturally generalizes the notion of a vector bundle over a noncommutative
algebra.

We shall see that in the case of the quantum Euclidean spheresSN−1
q a projectione ∈

Mat2n(SN−1
q ), with N = 2n or N = 2n + 1, can be so chosen that the relations which

define it (e2 = e = e∗) are equivalent to the relationsR(xi) which define the algebraA
of the spheres. As already mentioned, the projections can be regarded as defining modules
of sections of bundles over the spheres which then will beq-generalizations of monopoles,
instantons or more general twisted configurations. As in the classical situation, the bundles
should be characterized by integer valued topological charges (Chern numbers); work on
these is in progress and will be reported somewhere else.

In Section 2, some basic results[13] about the generalN -dimensional quantum Euclidean
spacesRN

q and quantum Euclidean spheresSN−1
q are reviewed. InSection 3, we shall

introduce the projections which determine (and are determined by) the spheres relations
and which, in turn, define twisted configurations over the spheresSN−1

q . We shall describe
in detail the casesN = 3,4,5,6, i.e. the spheres of dimensions 2,3,4 and 5, respectively,
and outline the general case. Not surprisingly, ‘even- and odd-dimensional’ spheres will
behave differently. InSection 4, we construct the projections for the normal and cotangent
bundles over the spheresSN−1

q . The final remarks concern some preliminary results on the
computation of topological charges.

2. Quantum Euclidean planes and spheres

In this section some basic results[13] (see also[6]) about the generalN -dimensional
quantum Euclidean spacesC

N
q andR

N
q and spheresSN−1

q are reviewed. We start with the

matrixR̂ for the quantum group SOq(N,C). It is a symmetricN2 ×N2 matrix and its main
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property is that it satisfies the braid relation. It admits a projector decomposition:

R̂ = qP(s) − q−1P(a) + q1−NP(t), (2.1)

where theP(s),P(a),P(t) are SOq(N)-covariantq-deformations of the symmetric trace-free,
antisymmetric and trace projectors, respectively. The projectorP(t) projects onto a one-
dimensional subspace and can be written in the formP(t)

ij
kl = (gmngmn)

−1gijgkl. This
leads to the definition of a deformed metric matrix, theN × N matrix gij

given by

gij = q−ρi δi,−j . (2.2)

If n is the rank of SO(N,C), i.e. the integer part inN/2, the indices take the values
i = −n, . . . ,−1,0,1, . . . , n for N = 2n + 1, andi = −n, . . . ,−1,1, . . . , n for N = 2n.
Moreover, we have introduced the notation

ρi =

 (n− 1

2, . . . ,
1
2,0,−1

2, . . . ,
1
2 − n) forN = 2n+ 1,

(n− 1, . . . ,0,0, . . . ,1 − n) forN = 2n.
(2.3)

The metric and the braid matrix satisfy the ‘gTT ’ relations[13]

gilR̂
±1lh

jk = R̂∓1hl
ijglk, gilR̂±1jk

lh = R̂∓1ij
hlg

lk. (2.4)

With the help of the projectorP(a), theN -dimensional quantum Euclidean space is defined
as the associative algebraC

N
q generated by elements{xi}i=−n,...,n with relations

P(a)
ij

klx
kxl = 0. (2.5)

or, more explicitly[23]

xixj = qxj xi for i < j, i = −j,

[xi, x−i ] =



kω−1

i−1r
2
i−1 for i > 1,

0 for i = 1, N = 2n,

hr2
0 for = 1, N = 2n+ 1.

(2.6)

We use the notationωi = qρi + q−ρi , h = q1/2 − q−1/2, k = q − q−1 and

r2
i =

i∑
k,l=−i

gklx
kxl, i ≥ 0 for N = 2n+ 1, i ≥ 1 for N = n. (2.7)

The last elementr2 ≡ r2
n can be shown to be central.

Forq ∈ R
+ a conjugation(xi)∗ = xjgji can be defined onCN

q to obtain what is known as
the quantum real Euclidean spaceR

N
q . The relations(2.6)can be used to derive analogous
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ones for the variables{(xi)∗, xj },
xixj = qxj xi for i < j, x∗

i xj = qxj x
∗
i , i = j,

[xi, (xi)∗] =




[
(1 − q−2)

(1 + q−2ρi−1)

]
r2
i−1 for i > 1,

0 for i = 1, N = 2n,

(1 − q−1)r2
0 for i = 1, N = 2n+ 1.

(2.8)

The central elementr2 can be written as

r2 =
n∑

k=−n

(xk)∗xk = q−2ρnxn(xn)∗ + · · · + (xn)∗xn, (2.9)

with similar expressions for the elementsr2
i , i ≥ 0 forN = 2n+ 1, i ≥ 1 forN = n,

r2
i =

i∑
k=−i

(xk)∗xk = q−2ρi xi(xi)∗ + · · · + (xi)∗xi. (2.10)

By fixing the value ofr2 we get the quantum Euclidean sphereSN−1
q of the corresponding

radius. Thus, the quantum Euclidean sphereSN−1
q is naturally considered as a quantum

subspace of the quantum Euclidean spaceR
N
q and the algebra of functions on the sphere is

a quotient of the algebra of functions on the quantum Euclidean space, the quotient being
taken by the ideal generated by the relation that fixes the radius. Furthermore, the spheres
SN−1
q are invariant under the action of the quantum groups SOq(N) on them.

It is easy to see that the spheresSN−1
q have aS1 worth of classical points. Indeed, let

r ∈ R \ {0} be the radius of the sphere. Then, withλ ∈ C such that|λ|2 = 1, there is a
family of one-dimensional representations (characters) of the algebraSN−1

q given by

τλ(1) = 1, τλ(x
n) = r√

1 + q−2ρn
λ, τλ((x

n)∗) = r√
1 + q−2ρn

λ̄,

τλ(x
i) = τλ((x

i)∗) = 0, (2.11)

for i = 0,1, . . . , n− 1 or i = 1, . . . , n− 1 according to whetherN = 2n+ 1 orN = 2n.
Clearly these representations will yield traces on the algebrasSN−1

q .

3. Twisted configurations over SN−1
q

We shall now introduce a hermitian idempotent or projection, an elemente ∈ Mat2n
(SN−1

q ) satisfying the conditionse = e2 = e∗ which determine the structure of the algebra

SN−1
q . The star here is the formal adjoint in the complete matrix algebra andN is even or

odd. These projections, in turn, can be thought of as defining modules of sections of bundles
over the spheresSN−1

q which areq-generalizations of monopoles and instanton bundles or
more general twisted configurations. We shall use a matrix trace together with the trace
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determined by the representations(2.11) to compute the rank which, for the projector in
question, will turn out to be equal to 2n−1. At the moment we are unable to compute the
topological charges in general; work on this is in progress and will be reported elsewhere.
We shall describe in detail the casesN = 3,4,5,6, that is the spheres of dimensions 2,3,4
and 5, respectively. We shall also outline the general case which in principle can be obtained
using the same techniques.

3.1. Monopoles on the Euclidean sphere S2
q

With a suitable rescaling of the generators the Euclidean sphereS2
q can be identified with

the so called equator sphere of Podleś [24]. For its presentation, we have the following
generators:

xi = (
√
qx∗

1, x0, x1), (3.1)

with (x0)
∗ = x0, and commutation relations(2.8)given by

x0x1 = qx1x0, x∗
1x0 = qx0x

∗
1, [x1, x

∗
1] = (1 − q−1)x2

0. (3.2)

These commutation relations give for the central elementr2 the equivalent expressions

r2 = qx1x
∗
1 + x2

0 + x∗
1x1 = qx2

0 + (1 + q)x∗
1x1 = q−1x2

0 + (1 + q)x1x
∗
1 . (3.3)

Then, a straightforward computation yields that the elemente ∈ Mat2(S2
q ) given by

e = 1

2

(
1 + q−1/2r−1x0 (1 + q)1/2r−1x1

(1 + q)1/2r−1x∗
1 1 − q1/2r−1x0

)
(3.4)

which is hermitian by construction, is also idempotent,e2 = e, if and only if all the relations
(3.2) and (3.3)which defineS2

q are satisfied.

When the Euclidean sphereS2
q is identified with Podlés equator sphere the projector(3.4)

coincides with the one found in[5] where projectors for all Podleś spheres were constructed
(a projector on the so called Podleś standard sphere had already been constructed in[16]).
The projection(3.4)(and the corresponding vector bundle overS2

q ) is of rank 1,

rank(e) =: τλ ◦ Tr(e) = τλ

(
1 + 1

2r
q−1/2(1 − q)x0

)
= 1, (3.5)

where we have used the one-dimensional representations(2.11)and Tr denotes a matrix
trace. In order to compute the topological charge of the bundle we need a cyclic 0-cocycle,
i.e. a traceτ1, on the reduced algebrāS2

q = S2
q/C1 . This computation is an example of

the pairing between K-theory and cyclic cohomology[7]. In the present situation the cyclic
cocycle one needs is of degree zero since forS2

q all cyclic cohomology is inHC0(S2
q ) while

the even cyclic cohomologyHCn(S2
q ), n > 0, is the image of the periodicity operator[22].

The traceτ1 was found in[22] and on the generators(3.1)gives in particular

τ1(x0) = −2rq1/2 1

1 − q
. (3.6)
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Then, with [Tr(e)] ∈ S̄2
q , the topological charge of the projectione is found to be

τ1([Tr(e)]) = τ1
(

1

2r
q−1/2(1 − q)x0

)
= −1, (3.7)

as it should be given the analogous computations in[4,16] for the computations of topolog-
ical charges ofq-monopoles on Podleś spheres. The fact that the pairing in(3.7)gives an
integer number is a consequence of a noncommutative index theorem[7] since the traceτ1

is the character of a Fredholm module[22]. The trace(3.6) is singular in the classical limit
q = 1. In the latter limit the bundle corresponding to the projection(3.4) is the monopole
bundle over the classical sphereS2 of topological charge (first Chern number) equal to
−1 which is computed by integrating a 2-form onS2 [19] (classically the relevant cyclic
cocycle is in degree 2 and is associated with the volume form of the sphere).

3.2. Instantons on the Euclidean sphere S4
q

In this section, we generalize the projector(3.4) on the sphereS2
q to a projector on the

sphereS4
q and indicate how to further generalize it to any even quantum Euclidean sphere.

The generators of the algebraS4
q are the five elements

xi = (q3/2x∗
2, q

1/2x∗
1, x0, x1, x2), (3.8)

with (x0)
∗ = x0. Then the commutation relations(2.8)are

xixj = qxj xi, i < j, x∗
i xj = qxj x

∗
i , i = j, [x1, x

∗
1] = (1 − q−1)x2

0,

[x2, x
∗
2] = q−1(1 − q−1)(qx1x

∗
1 + x2

0 + x∗
1x1) = q−1(1 − q−1)(qx2

0 + (1 + q)x∗
1x1)

= q−1(1 − q−1)(q−1x2
0 + (1 + q)x1x

∗
1). (3.9)

These commutation relations give for the central elementr2 the equivalent expressions

r2 = q3x2x
∗
2 + qx1x

∗
1 + x2

0 + x∗
1x1 + x∗

2x2 = (1 + q3)x∗
2x2 + (1 + q3)x∗

1x1

+q
1 + q3

1 + q
x2

0 = (1 + q3)x2x
∗
2 + q−2(1 + q3)x1x

∗
1 + q−3 1 + q3

1 + q
x2

0. (3.10)

To alleviate the notation we now consider the caser2 = [(1+q3)/(1+q)] ·1. Equivalently
we could have suitably rescaled the generators. The previous sphere relations reduce to

1=(1 + q)x∗
2x2 + (1 + q)x∗

1x1 + qx2
0=(1 + q)x2x

∗
2 + q−2[(1 + q)x1x

∗
1 + q−1x2

0].

(3.11)

Then, a straightforward computation yields that the elemente ∈ Mat4(S4
q) given by

e = 1

2




1 + q−3/2x0 q−1(1 + q)1/2x1 (1 + q)1/2x2 0

q−1(1 + q)1/2x∗
1 1 − q−1/2x0 0 (1 + q)1/2x2

(1 + q)1/2x∗
2 0 1− q−1/2x0 −(1 + q)1/2x1

0 (1 + q)1/2x∗
2 −(1 + q)1/2x∗

1 1 + q1/2x0




(3.12)
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which is hermitian by construction, is also idempotent,e2 = e, if and only if all the
relations(3.9) and (3.11)which defineS4

q are satisfied. For a generic value of the radiusr

the corresponding idempotent can be easily guessed from the previous expression and the
analogue one(3.4) for the sphereS2

q : one has simply to multiply the algebra generators in

(3.12)by the constant [(1 + q3)/(1 + q)]1/2r−1.
It is worth stressing the way the relations(3.3) for the sphereS2

q are incorporated in the

ones(3.11)for the sphereS4
q . This fact helped in constructing the projection(3.12)for S4

q

by a suitable use of the projection(3.4)for S2
q . Indeed, the projectione(4) in (3.12)is related

to the analogous onee(2) in (3.4)by

e(4) = 1

2

(
I2 + q−1u(2) (1 + q)1/2x2I2

(1 + q)1/2x∗
2I2 I2 − u(2)

)
, (3.13)

with the hermitian isometryu(2) given byu(2) = 2e(2) − 1. By applying this ‘inductive
construction’ one can obtain the projections for the higher-dimensional even spheres.

By using the one-dimensional representations(2.11)and a matrix trace Tr one finds that
the projection(3.12)(and the corresponding vector bundle overS4

q ) is of rank 2,

rank(e) =: τλ ◦ Tr(e) = τλ(2 + 1
2q

−3/2(1 − q)2x0) = 2. (3.14)

As it happens for the sphereS2
q described previously, in order to compute the topological

charge of the bundle, we need a cyclic 0-cocycle, i.e. a traceτ1, on the reduced algebra
S̄4
q = S4

q/C1, which needs to be combined with the matrix trace. Now, the equivalence class

of Tr(e) in S̄4
q is given by

[Tr(e)] = 1
2q

−3/2(1 − q)2x0 (3.15)

and we expect that the traceτ1 should yield−1 on the previous expression. The reason to
expect a value−1 for the topological charge is that in the classical limitq = 1, the bundle
corresponding to the projection(3.12)is the instanton bundle over the classical sphereS4

of topological charge (second Chern number) equal to−1; this is computed by integrating
a 4-form onS4 [19]. As for the sphereS2

q , the traceτ1 on S4
q will be then singular in

the classical limit. As for now we have been unable to find such a singular trace on the
sphereS4

q .

3.3. Solitons on odd quantum Euclidean spheres

As already mentioned, odd quantum Euclidean spheres behave in a different manner
than the even ones in so that the corresponding projectors are trivial (i.e. they correspond
to trivial bundles). OnS3

q this is a consequence of the fact that for the K-theory group one

hasK0(S
3
q) = Z [21] and for higher values ofN one expects a similar result.

3.3.1. The Euclidean sphere S3
q

With a suitable rescaling of the generators the Euclidean sphereS3
q can be identified

with the ‘quantum sphere’SUq(2) of [28]. The present generators of the algebra are four
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elements

xi = (qx∗
2, x

∗
1, x1, x2) (3.16)

with commutation relations(2.8)

xixj = qxj xi, i < j, x∗
i xj = qxj x

∗
i , i = j, [x1, x

∗
1] = 0,

[x2, x
∗
2] = (1 − q−2)x1x

∗
1 . (3.17)

The central radial variable can be written as

r2 = q2x2x
∗
2 + x1x

∗
1 + x∗

1x1 + x∗
2x2 = (1 + q2)(x∗

2x2 + x∗
1x1)

= (1 + q2)(x2x
∗
2 + q−2x1x

∗
1). (3.18)

To alleviate the notation, we have chosen here the caser2 = (1+q2) ·1 so that the previous
sphere relations reduce to

1 = x∗
2x2 + x∗

1x1 = x2x
∗
2 + q−2x1x

∗
1 . (3.19)

Then, straightforward computations yield that the elemente ∈ Mat4(S3
q) given by

e = 1

2




1 q−1x1 x2 0

q−1x∗
1 1 0 x2

x∗
2 0 1 −x1

0 x∗
2 −x∗

1 1


 (3.20)

which is hermitian by construction, is also idempotent,e2 = e, if and only if all the
relations(3.17) and (3.19)which defineS3

q are satisfied. For a generic value of the radiusr

the corresponding idempotent can be easily guessed from the previous expression: one has
simply to multiply the algebra generators in(3.20)by the constant(1 + q2)1/2r−1.

The projection(3.20)(and the corresponding vector bundle overS3
q ) is of rank 2,

rank(e) = τλ ◦ Tr(e) = τλ(2) = 2, (3.21)

with the representationτλ given in(2.11). By direct computation, one checks that the Chern
character of the projection(3.20)vanished identically.

3.4. Solitons on the Euclidean sphere S5
q

The generators of the algebraS5
q are the six elements

xi = (q2x∗
3, qx∗

2, x
∗
1, x1, x2, x3), (3.22)

with commutation relations(2.8)given by

xixj = qxj xi, i < j, x∗
i xj = qxj x

∗
i , i = j, [x1, x

∗
1] = 0,

[x2, x
∗
2] = (1 − q−2)x1x

∗
1, [x3, x

∗
3] = 1 − q−2

1 + q2
[q2x2x

∗
2 + x1x

∗
1 + x∗

1x1 + x∗
2x2]

= (1 − q−2)(x∗
2x2 + x∗

1x1) = (1 − q−2)(x2x
∗
2 + q−2x1x

∗
1). (3.23)
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It follows that the radial element can be written as

r2 = q4x3x
∗
3 + q2x2x

∗
2 + x1x

∗
1 + x∗

1x1 + x∗
2x2 + x∗

3x3

= (1 + q4)[x∗
3x3 + x∗

2x2 + x∗
1x1] = (1 + q4)[x3x

∗
3 + q−2(x2x

∗
2 + q−2x1x

∗
1)].

(3.24)

For the moment we consider the caser2 = (1+ q4) · 1. Then, the previous sphere relations
reduce to

1 = x∗
3x3 + x∗

2x2 + x∗
1x1 = x3x

∗
3 + q−2(x2x

∗
2 + q−2x1x

∗
1). (3.25)

And again, straightforward computations yield that the elemente ∈ Mat8(S5
q) given by

e=1

2




1 q−2x1 q−1x2 0 x3 0 0 0

q−2x∗
1 1 0 q−1x2 0 x3 0 0

q−1x∗
2 0 1 −q−1x1 0 0 x3 0

0 q−1x∗
2 −q−1x∗

1 1 0 0 0 x3

x∗
3 0 0 0 1 −q−1x1 −x2 0

0 x∗
3 0 0 −q−1x∗

1 1 0 −x2

0 0 x∗
3 0 −x∗

2 0 1 x1

0 0 0 x∗
3 0 −x∗

2 x∗
1 1




(3.26)

which is hermitian by construction, is also idempotent,e2 = e, if and only if all the
relations(3.23) and (3.25)which defineS5

q are satisfied. For a generic value of the radiusr

the corresponding idempotent can be easily guessed from the previous expression: one has
simply to multiply the algebra generators in(3.26)by the constant(1 + q4)1/2r−1.

Again, as for the even spheres, one should notice the way the relations(3.19)for the sphere
S3
q are incorporated in the ones(3.25)for the sphereS5

q . This fact helped in constructing

the projection(3.26) for S5
q by a suitable use of the projection(3.20) for S3

q . Indeed, the
projectione(5) in (3.26)is related to the analogous onee(3) in (3.20)by

e(5) = 1

2

(
I4 + q−1u(3) x3I4

x∗
3I4 I4 − u(3)

)
, (3.27)

with the hermitian isometryu(3) given byu(3) = 2e(3) − 1. By applying this ‘inductive
construction’ one can obtain the projections for the higher-dimensional odd spheres.

The projection(3.26)(and the corresponding vector bundle overS5
q ) is of rank 4,

rank(e) = τλ ◦ Tr(e) = τλ(4) = 4. (3.28)

As for theS3
q and the corresponding projection(3.20), the Chern character of the projection

(3.26)vanished identically as well and the corresponding bundle is again trivial.



160 G. Landi, J. Madore / Journal of Geometry and Physics 45 (2003) 151–163

4. Normal and cotangent bundles

We shall now introduce a projection in a suitable matrix algebra which determines nat-
ural cotangent bundles over the spheresSN−1

q . Consider then the following ‘vector-valued

function’ onSN−1
q :

〈⊥ |=




1

r
(q−ρnxn, q

−ρn−1xn−1, . . . , q
−ρ1x1, x0, x

∗
1, . . . , x

∗
n−1, x

∗
n) for N=2n+1,

1

r
(q−ρnxn, q

−ρn−1xn−1, . . . , q
−ρ1x1, x

∗
1, . . . , x

∗
n−1, x

∗
n) for N=2n,

(4.1)

which is clearly normalized to 1:〈⊥ | ⊥〉 = r2/r2 = 1, from relation(2.9). Thus the matrix
valued elemente⊥ ∈ MatN(SN−1

q ) given by

e⊥ = | ⊥〉〈⊥ | (4.2)

is a self-adjoint idempotent, i.e.e2
⊥ = e⊥, e∗

⊥ = e⊥. The corresponding finite projective
module over the sphereSN−1

q will be named thenormal bundle over the sphereSN−1
q .

Furthermore, the self-adjoint idempotent

eCot = IN − | ⊥〉〈⊥ | (4.3)

is a natural candidate for thecotangent bundle over the sphereSN−1
q .

Again, the rank of the bundles is computed by combining the matrix trace with the
one-dimensional representation in(2.11), rank(e) = τλ ◦ Tr(e). Then, straightforward
computations give that, as expected, the projectore⊥ is of rank 1 while the projectoreCot
is of rankN − 1,

rank(e⊥) = τλ ◦ Tr(e⊥) = 1

r2
τλ(q

−2ρnx∗
nxn + · · · + xnx

∗
n) = 1,

rank(eCot) = τλ ◦ Tr(eCot) = N − 1. (4.4)

Relations of the cotangent projector(4.3)with differential calculi on the spheresSN−1
q will

be analyzed elsewhere.

5. Final remarks

We have presented a description of (the algebra of functions on) the quantum Euclidean
spheresSN−1

q by means of projectionse ∈ Mat2n(SN−1
q ), with N = 2n or N = 2n + 1

which, in turn, can be regarded as bundles over the spheresSN−1
q . As we shall report

elsewhere, odd dimensional quantum Euclidean spheres are the same as the ones constructed
in [26] from quantum unitary groups. Furthermore, at theC∗-algebra level even and odd
quantum Euclidean spheres coincides with the corresponding spheres constructed in[17].
Additional and different spheres have been constructed in[1–3,9–12,25,27]. The monopole
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presented here on the sphereS2
q coincides with the one constructed in[5] on the equator

spheres of[24]. Ourq-solitons andq-instantons on the spheresS3
q , S4

q seems to be different
from analogous objects recently found in[2,3,11,12,25]. It is also clearly different from
the instanton constructed in[10]. The present Euclidean spheres are characterized by a
‘homological dimension drop’ which signals the fact that, contrary to the spheresS4

θ of
[10], they arenot noncommutative manifolds and their geometry cannot be a solution
of homological equations like the ones in[10]. In [10], the spheresS4

θ were endowed
with a noncommutative geometry via an even spectral triple(A,H,D, γ ) whereA is a
noncommutative algebra with involution∗ acting on aZ2-graded Hilbert spaceH (with
grading given byγ ) while D is a self-adjoint operator onH with compact resolvent and
such that [D, a] is bounded for anya ∈ A [7]. The operatorD specify both the metric
on the state space ofA and the K-homology fundamental class[8]. The geometry for the
spheresS4

θ is constructed by deforming the commutative triple(C∞(S4),H,D, γ5), where
D is the Dirac operator on the Hilbert spaceH of square integrable spinors overS4 and the
grading is given by the ‘fifth gamma matrix’. In fact, one has an isospectral deformation
since bothH andD are kept fixed, so that all spectral data of the geometry are unchanged,
while the algebra and its representations are deformed.

An important problem that we leave for the future is the computation of topological
charges, notably on the quantum Euclidean sphereS4

q and higher-dimensional even spheres.
This is a difficult task since it involves the construction of Fredholm modules and their
characters which, via the noncommutative index theorem of[7], pair integrally with the
K0 group. That the construction is difficult it is already evident from the analogous con-
structions[21,22]for the spheresS2

q andS3
q . As a preliminary step for this construction we

introduce some representations of the algebra of the quantum Euclidean sphereS4
q (simi-

lar representations can be constructed for any sphere and generalize known results for the
quantum spheresS2

q andS3
q ).

Let us then consider again the algebra ofS4
q which is specified by the commutation

relations(3.9). And letH be an infinite-dimensional Hilbert space with orthonormal basis
{ψn,m, n,m = 0,1,2, . . .}. We have two representations (see also[14])

π(x0)ψn,m = ±r

√
1 + q

1 + q3
qn+1/2qm+1ψn,m,

π(x1)ψn,m=r

√
1 − q2(n+1)

1 + q3
qm+1ψn+1,m, π(x∗

1)ψn,m=r

√
1 − q2n

1 + q3
qm+1ψn−1,m,

π(x2)ψn,m = r

√
1 − q2(m+1)

1 + q3
ψn,m+1, π(x∗

2)ψn,m = r

√
1 − q2m

1 + q3
ψn,m−1, (5.1)

with U a self-adjoint unitary operator on the Hilbert spaceH.
We notice that forq < 1 any power of the operatorπ(x0) is a trace class operator while

this is not the case for the operatorsπ(x1), π(x∗
1), π(x2) andπ(x∗

2) nor for any of their
powers. Were this not the case there would be a contradiction with the algebra relations
(3.9). A detailed analysis of the previous representations will be reported somewhere else.
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